
DOI 10.1140/epja/i2002-10137-2

Eur. Phys. J. A 17, 65–69 (2003) THE EUROPEAN
PHYSICAL JOURNAL A

Spectroscopic information from different theoretical descriptions
of (un)polarized (e, e′p) reactions

M. Radici1, A. Meucci1,a, and W.H. Dickhoff 2
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Abstract. We analyze the unpolarized and polarized electron-induced proton knockout reactions on 16O
in different kinematical settings using two theoretical approaches. The first one is based on a relativistic
mean-field distorted-wave description of the bound and scattering states of the proton, including a fully
relativistic electromagnetic current operator. The second approach adopts the same current operator, but
describes the proton properties on the basis of microscopic calculations of the self-energy in 16O below the
Fermi energy and final-state damping in nuclear matter above the Fermi energy, using the same realistic
short-range and tensor correlations. Good agreement with all unpolarized data is obtained at low and
high Q2 by using the same spectroscopic factors fixed by the low-Q2 analysis. A reasonable agreement is
achieved for polarization observables.

PACS. 25.30.Dh Inelastic electron scattering to specific states – 24.70.+s Polarization phenomena in
reactions – 24.10.Jv Relativistic models – 24.10.Eq Coupled-channel and distorted-wave models

A long series of high-precision experiments on sev-
eral nuclei [1–6] have generated a well-established tradi-
tion which singles out exclusive (e, e′p) knockout reactions
as the primary tool to explore the single-particle aspects
of the nucleus. The experimental analysis has focused on
the missing energy spectrum of the nuclear response, as-
signing specific quantum numbers and spectroscopic fac-
tors to the various peaks corresponding to orbitals close
to the Fermi energy. In addition, the missing momentum
dependence of these spectra has been studied, stimulat-
ing, for example, the exploration of the high-momentum
components induced by nucleon-nucleon correlations in-
side nuclei [7,8]. The theoretical description of these re-
actions have usually been performed in the framework of
the nonrelativistic distorted-wave impulse approximation
(DWIA), including the Coulomb distortion of the elec-
tron and proton waves due to the presence of the nuclear
field [1,9–11]. This approach was able to describe to a high
degree of accuracy the shape of the experimental momen-
tum distribution for several nuclei in a wide range of dif-
ferent kinematics [10,11]. However, a systematic rescaling
of the normalization of the bound state, interpreted as the
spectroscopic factor for the corresponding level, had to be
applied in order to reproduce the magnitude of the ex-
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perimental distribution [5,12]. This systematic deviation
from the mean-field expectations has clearly identified the
limits of this approximation. In fact, nowadays a clear pic-
ture has emerged in which a considerable mixing between
single-hole states and more complicated configurations re-
sults in a fragmentation of the single-particle strength in
several peaks around and beyond the Fermi surface. A fur-
ther depletion of the single-particle strength is induced by
short-range and tensor correlations between nucleon pairs
in the ground state [13,14].

More recent (e, e′p) experiments have been carried
out at the Jefferson Laboratory (JLAB) [15,16] at higher
momentum transfer Q2. The analysis of this new kine-
matic domain required a substantial upgrade of several
theoretical ingredients in order to incorporate all possi-
ble relativistic effects. Models based on relativistic DWIA
(RDWIA) have been developed, where the Dirac equa-
tion is solved directly for the nucleon bound and scat-
tering states [17–20] or, equivalently, a Schrödinger-like
equation is solved and the spinor distortion by the Dirac
scalar and vector potentials is incorporated in an effec-
tive current operator in the so-called effective Pauli reduc-
tion [20,21]. A successful description of the data has been
achieved, but slightly different spectroscopic factors are
deduced, because the relativistic optical potentials in gen-
eral give a stronger residual final-state interaction (FSI)
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than the corresponding nonrelativistic ones [19,22]. More-
over, the limits of validity of the older DWIA analysis
versus RDWIA were not always properly explored, as dis-
cussed in ref. [23], resulting, for example, in a certain de-
gree of ambiguity for the spectroscopic factors extracted
at low energy.

Despite several sources of theoretical uncertainties
(different equivalent potentials for FSI, relativistic effects
on both FSI and spectroscopic factors, off-shell effects...),
a microscopic treatment of the (e, e′p) reaction mechanism
at different kinematics is highly desirable. Results for a
first attempt towards this goal were recently obtained in
ref. [24] (see also ref. [25] concerning the treatment of FSI),
where a successful analysis of low- and high-Q2 data was
performed using identical spectroscopic factors which were
deduced at low Q2. In the present paper, this analysis is
extended to the data at high missing momentum of ref. [6]
as well as to the JLAB experiment with polarization, as
reported in ref. [16]. The results will then be compared
with those obtained in ref. [23], where a RDWIA approach
to low- and high-energy data was presented and a careful
analysis of the limits of the nonrelativistic DWIA was car-
ried out. The sensitivity to different off-shell prescriptions
for the electromagnetic current operator will be also dis-
cussed [26], but the difference between spectroscopic fac-
tors obtained by nonrelativistic and relativistic analyses
remains unsolved and its discussion is beyond the scope
of this paper.

The basic ingredient of the calculation is the transition
amplitude (omitting spin degrees of freedom for simplic-
ity) [10,24],

Jµ
n (ω,q,p ′

N , ER) =
∫

dp dp ′ χ
(−) ∗
p′

N ERn(p
′)

× Ĵµ
eff(p,p ′,q, ω) φERn(p) [Zn(ER)]

1
2 , (1)

where q, ω are the momentum and energy transferred to
the target (Q2 = q2 − ω2) and p ′

N is the knocked-out nu-
cleon momentum, leaving the residual nucleus in a well-
defined state with energy ER and quantum numbers n.
The function φERn describes the overlap between the ex-
act A-body initial state and the residual (A − 1)-body
state induced by producing a hole; χ

(−)
p′

N ERn describes the
same kind of overlap when producing the hole in the ex-
act A-body final state [10]. The norm of φERn is 1 and
Zn(ER) is the spectroscopic factor associated with the re-
moval process, i.e., it corresponds to the probability that
the residual nucleus can indeed be considered as the target
nucleus with a hole. The boundary conditions of the eigen-
value problem for χ

(−)
p′

N ERn are those of an incoming wave.
In the RDWIA of refs. [23,26], φERn is replaced by

the solution of a Dirac equation [27] deduced in the con-
text of a relativistic mean-field theory that satisfactorily
reproduces global and single-particle properties of several
nuclei [28]. For the scattering states the effective Pauli re-
duction is applied. The Darwin nonlocality factor, that
contains the effect of the negative-energy components of
the spinor, is reabsorbed in the current operator, which be-
comes an effective relativistic one-body operator depend-

ing on the Dirac scalar and vector potentials [20,21], as
well as on the chosen off-shell prescription (cc1, cc2, or
cc3) [26,29]. The function χ

(−)
p′

N ERn ∼ χ
(−)
p′

N
becomes a two-

component spinor which solves the Schrödinger equation
with the equivalent central and spin-orbit potentials ex-
pressed in terms of the original Dirac scalar and vector
ones [30].

In ref. [24] the transition amplitude is evaluated by
systematically applying the effective Pauli reduction to
both the initial and final Dirac spinors, determining the
relevant integrals in momentum space thus avoiding any
effective momentum approximation (EMA) [21]. The cur-
rent operator displays the same features as in the RDWIA
discussed above, i.e., it is an effective one-body relativistic
operator depending on the Dirac scalar and vector poten-
tials. In ref. [24] only the cc1 off-shell prescription has
been considered for compatibility with older low-energy
data analyses [31]. The scattering state of the (very en-
ergetic) proton is described in the eikonal approximation
by a uniformly damped plane wave, or, equivalently, by a
plane wave with a complex momentum p′

f = p′
N +ipI [32,

33]. The imaginary part pI is microscopically justified by
linking the proton absorption to the same process tak-
ing place in nuclear matter and by calculating the nu-
cleon self-energy in a self-consistent manner with realistic
short-range and tensor correlations [24,34]. The observed
damping is also in agreement with expectations in differ-
ent kinematic domains [35]; however, embedding the pro-
ton in nuclear matter prevents the inclusion of spin-orbit
effects; therefore, the corresponding Darwin nonlocality
factor for the final state is just 1. The function φERn is
obtained from p-shell quasihole states deduced from the
nucleon self-energy calculated for 16O using realistic short-
range and tensor correlations [8].

The hadronic tensor of the reaction, Wµν , involves an
average over initial states and a sum over the undetected
final states of bilinear products of the scattering amplitude
(1). The differential cross-section for the (�e, e′�p ) reaction,
with initial beam helicity h and proton polarization com-
ponent ŝ, becomes [10]

dσhŝ

dp′
edp′

N

=
e4

16π2

1
Q4pep′e

LµνWµν

≡ e4

16π2

1
Q4pep′e

Lµν
i

∑ ∑∫
f
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nJν ∗

n δ
(
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)

=
dσ0

dp′
edp′

N

1
2

[1 + P · ŝ + h (A + P′ · ŝ)] ,

(2)
where pe, p′e are the initial and final electron momenta
and Lµν is the lepton tensor. The coefficients of the linear
expansion are the induced polarization P, the electron an-
alyzing power A, and the polarization transfer coefficient
P′. The reference frame in the polarimeter is formed by
the direction of p′

N (L-component), the direction of q×p′
N

(N -component) and N̂ × L̂ (T -component). In coplanar
kinematics, as is the case for the E89033 experiment at
JLAB [16], only PN , P ′L and P ′T survive. When summing
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over the recoil proton polarization and the beam helicity,
the usual unpolarized cross-section dσ0 is recovered.

In fig. 1 we first reconsider the unpolarized 16O(e, e′p)
reaction leading to the ground state and the first excited
state of 15N with p 1

2 and p 3
2 quantum numbers, respec-

tively. In the upper panel, data have been collected in
parallel kinematics (p ′

N ‖ q) at a constant proton energy
of 90 MeV in the center-of-mass system [36]. They are
presented in the form of the reduced cross-section

n(pm, Em) ≡ dσ0

dp′
edp′

N

1
Kσep

, (3)

as a function of the missing momentum pm = p ′
N − q at

the considered missing energy Em, where K is a suitable
kinematic factor and σep is the elementary (half–off-shell)
electron-proton cross-section [29]. For ease of viewing, the
results for the transition to the p 1

2 ground state have been
multiplied by 40. The solid lines refer to the calculations
employing the p-shell quasihole states for 16O in a nonrel-
ativistic framework, as discussed in ref. [31]. The spectro-
scopic factors extracted from the data are Zp1/2 = 0.644
and Zp3/2 = 0.537, respectively. The dashed lines show
the results of the RDWIA analysis with the same cc1 off-
shell prescription; dot-dashed and dotted lines indicate the
results when using the cc2 and cc3 recipes, respectively.
Hence, the comparison among dashed, dot-dashed, and
dotted lines shows the evolution in pm of the theoreti-
cal uncertainty related to off-shellness at this kinematics.
Relativistic mean-field bound states are obtained by solv-
ing Hartree-Bogoliubov equations with finite-range inter-
actions [27]. The proton scattering wave is deduced from
relativistically equivalent energy-dependent optical poten-
tials [30]. The resulting spectroscopic factors, Zp1/2 =
0.708 and Zp3/2 = 0.602, have been obtained by a χ2

fit using the cc3 current, which gives an overall better de-
scription of the (e, e′p) observables, particularly for the
left-right asymmetry.

In the middle panel, the analysis of the same reaction is
extended to higher missing momenta. The experiment was
performed at the MAMI accelerator in Mainz [6] by mixing
six different kinematics, with a central value of 196 MeV
for the outgoing proton energy. The different data sets are
displayed with alternating markers. Again the solid lines
refer to the calculation employing the p-shell quasihole
states but with an effective relativistic current operator
and an eikonal microscopic description of FSI as discussed
above (see ref. [24] for further details). The dashed, dot-
dashed, and dotted lines still refer to the RDWIA analysis
with the cc1, cc2, and cc3 off-shell prescriptions for the
electromagnetic current, respectively. The same rescaling
spectroscopic factors are adopted for the theoretical curves
as in the upper panel. The p 1

2 results are conveniently mul-
tiplied by a factor 500. The overall agreement is still rather
satisfactory, even if the calculation based on the quasi-
hole state gives on average a worse performance than the
RDWIA ones (among which the cc3 recipe gives the best
description of data). This is probably due to the lack of a
full treatment of FSI effects inside the eikonal approxima-
tion, particularly those related to spin-orbit contributions
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Fig. 1. Upper panel: reduced cross-section for the
16O(e, e′p)15N transition to the ground state p 1

2
and first ex-

cited state p 3
2

of 15N at Ep = 90 MeV constant proton en-
ergy in the center-of-mass system in parallel kinematics [36].
Middle panel: reduced cross-section for the same reaction at
six different kinematics [6], indicated by alternating mark-
ers. Lower panel: cross-section for the same reaction but at
Q2 = 0.8 (GeV/c)2 in perpendicular kinematics [15]. Data for
the p 1

2
state have been multiplied by 40, 500 and 20, respec-

tively. Solid lines show the results when using the quasihole
spectral function for the bound state (see text) with spectro-
scopic factors Zp1/2 = 0.644 and Zp3/2 = 0.537 in all pan-
els [24,31]. Dashed, dot-dashed, and dotted lines represent the
results of the RDWIA approach with cc1, cc2, cc3 off-shell
prescriptions, respectively (see text). All the RDWIA curves
in all panels have been rescaled by the spectroscopic factors
Zp1/2 = 0.708 and Zp3/2 = 0.602, obtained by a χ2 fit to the
data of ref. [36] using the cc3 current.



68 The European Physical Journal A

0.2

0.4

-0.4

-0.2

0

0.2

0.4

-0.4

-0.2

0

0.2

0.4

0 100 200 300

-0.4

-0.2

0

0 100 200 300

Fig. 2. Polarization transfer components P ′L, P ′T for the 16O(�e, e′�p ) reaction at Q2 = 0.8 (GeV/c)2 in perpendicular kinemat-
ics [16] leading to the 15N p 1

2
, p 3

2
and s 1

2
residual states. Solid, dashed, dot-dashed, and dotted lines as in fig. 1.

which are, on the contrary, conveniently parametrized
in the RDWIA optical potential. At very high missing
momenta the agreement is somewhat less satisfactory,
but in this domain the contribution to the single-particle
strength is only an extremely tiny fraction of the 10% of
the protons that are expected to be associated with high
momenta due to short-range correlations [7,8].

In the lower panel, the same reaction is considered at
constant (q, ω) with Q2 = 0.8 (GeV/c)2 [15]. The data
now refer to the differential unpolarized cross-section dσ0,
avoiding any model dependence in the experimental anal-
ysis contained in the off-shell behavior of σep [29]. The
p 1

2 results are multiplied by a factor 20. The theoretical
curves have the same meaning as in the middle panel and
are rescaled again by the same spectroscopic factors. The
agreement with the data is very good also in this case.
This outcome is particularly welcome, since the spectro-
scopic factors correspond to a nuclear property that must
be independent of the probe scale Q2. Obviously, different
models give different spectroscopic factors, but it is im-
portant to note that we do not observe any energy scale
dependence of these factors over a wide kinematical range.
The approximation introduced in the eikonal treatment
of FSI, specifically the absence of any spin-orbit effect,
does not severely affect the agreement between the solid
lines and the data. Similarly, the sensitivity to the off-
shell ambiguity in the electromagnetic current operator is
relatively weak. After all, it is well known that the cross-
section is not particularly sensitive to these uncertainties
within a range of about 10%. In ref. [24] more sensitive
observables than the unpolarized cross-section were con-
sidered. Good agreement with these data was maintained
but, at the same time, the limitations of this approxi-
mation emerged, particularly in the left-right asymmetry.
Here, for the same kinematic conditions we extend the
analysis to polarization observables in order to further test
the capabilities of the models.
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Fig. 3. The ratio P ′T /P ′L for the 16O(�e, e′�p ) reaction at Q2 =
0.8 (GeV/c)2 in perpendicular kinematics [16] leading to the
15N p 1

2
, p 3

2
and s 1

2
residual states. Notations as in fig. 1.

In figs. 2 and 3 the polarization transfer components
P ′L, P ′T and their ratio P ′T /P ′L are shown as functions
of the missing momentum pm, respectively, for the
16O(�e, e′�p ) reaction at Q2 = 0.8 (GeV/c)2 and constant
(q, ω) for the transitions to the 15N ground state p 1

2 ,
the first p 3

2 state at Em = 6.32 MeV and the weak peak
with quantum numbers s 1

2 rising above a continuum
background at Em ∼ 28 MeV [16]. Solid, dashed, dot-
dashed, and dotted lines refer to the same calculations
as in fig. 1. For these observables and at this kinematics,
the sensitivity to off-shell effects is at most � 15%. The
overall agreement with the data is still good, particularly
for the microscopic calculations with the p 3

2 quasihole
state that performs even better than the RDWIA analysis
presented here or obtained by other groups [16]. This
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fact is remarkable, since the RDWIA analysis depends
on mean-field phenomenological potentials with several
parameters fitted to the considered target and energy
domain, while the calculation with quasihole states is
basically parameter free. In fact, from eq. (2) it is easy to
verify that the polarization observables are given by ratios
between a specific spin projection of the cross-section and
the unpolarized cross-section, eliminating any sensitivity
to the spectroscopic factor which is anyway fixed from the
very beginning to the low-energy data of ref. [36]. More-
over, the calculations of the solid lines include an attempt
of a microscopic description of FSI in the framework of
the eikonal approximation in a way which is consistent
with the description of the bound state. The limitations
of such an approach are more evident in the j = 1

2 case,
where, contrary to the RDWIA analysis, the absence of
any spin-orbit effects is most likely responsible for the
worse agreement. In any case, the second P ′T data point
for both p 1

2 and s 1
2 shells appears not reproducible in

both calculations, causing the theoretical ratio P ′T /P ′L
to deviate substantially from the experiment. A further
analysis of this unexplained feature is needed, but it is
beyond the scope of this paper.

In summary, we have analyzed the unpolarized and
polarized proton knockout reactions on 16O at different
kinematics with two theoretical approaches. The RDWIA
is based on a relativistic mean-field description of the pro-
ton bound state and on the effective Pauli reduction of
the final Dirac spinor, leading to a Schrödinger-equivalent
mean-field description of residual FSI and to an effec-
tive relativistic electromagnetic current operator which
depends on the Dirac scalar and vector potentials. The
same kind of Pauli reduction (and resulting current oper-
ator) is used for both initial and final states in the second
approach, where a microscopic description of the bound-
state properties is obtained by solving the Dyson equation
with a nucleon self-energy which includes realistic short-
range and tensor correlations for 16O. As an attempt to-
wards a more complete microscopic treatment, the proton
scattering wave is then generated in the eikonal approx-
imation by microscopically calculating the damping of a
plane wave as a solution of the Dyson equation for the nu-
cleon self-energy including the same realistic short-range
and tensor correlations between the struck proton and
the surrounding nucleons in nuclear matter. Good agree-
ment with data is observed for unpolarized reactions at
low and high Q2 by using the same spectroscopic fac-
tors fixed by the low-Q2 analysis, thus indicating that
no Q2-dependence of these factors is observed. Moreover,
a reasonable agreement with polarization observables is
achieved, even though a more detailed analysis is required
to understand the observed discrepancies.
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